
Circuit to enable the panel meter to measure its own supply voltage

CIRCUIT TO READ INPUT SUPPLY ON PM-438

Circuit Function

The DVM cannot measure its own supply by direct connection of the supply to the measurement input terminals, because both IN+ and IN-inputs sit at approximately 6.3V above the supply 0V.

There are several ways to scale and level-shift the monitored supply voltage. The solution given above, using the *Howland* current source is probably the most economical in components.

The accuracy obtained with typical op-amp offsets and 1% resistors is approximately \pm 2%. For improved accuracy, trim R5 to give the correct reading for a known power supply input.

LCD Panel Meter PM438

Product Code: 375-102

Distributed by:

JPR Electronics Ltd Unit 4 Circle Business Centre Blackburn Road Houghton Regis **Dunstable**, Beds LU5 5DD

Tel: 01582 470000 Fax: 01582 470001 email: sales@jprelec.co.uk. website: www.jprelec.co.uk

Introduction

This DVM is a $3\frac{1}{2}$ digit panel meter with FSD ± 199.9 mV, automatic polarity indication, with accuracy $\pm 0.5 \% \pm 1$ digit.

Technical Data

Input impedance $>100M\Omega$

Accuracy $\pm 0.5\% \pm 1 \text{digit}$

Measurement range 199.9mV

Indication method LCD display

Measurement method Dual-slope integration A/D

Power supply 8 — 12V DC (9V battery)

Supply current ≈1mA

Operating temperature range $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Size 68mm x 44mm

DCSupply

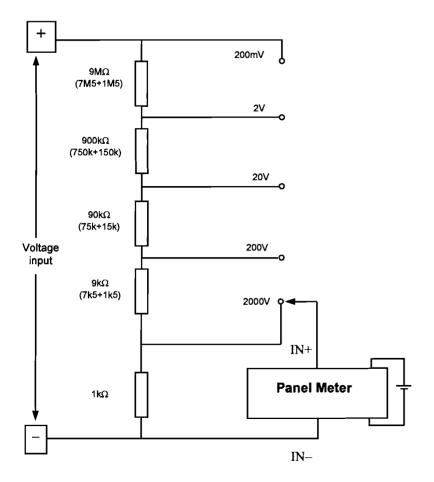
The input required is 8 — 12V DC @ 1mA from battery or power supply. Connections are labelled V+ and V-. Check the polarity "+" and "-" before connection.

General Description

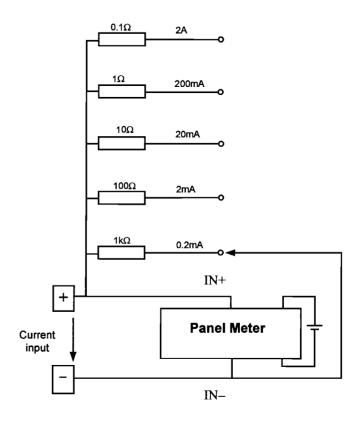
Analogue-to-digital Converter

This panel meter uses a low power CMOS 3½ digit analogue-to-digital converter.

The DC voltage at the input measurement connection (IN-) is approximately +6.3V relative to the negative terminal (V-) of the power supply or battery).

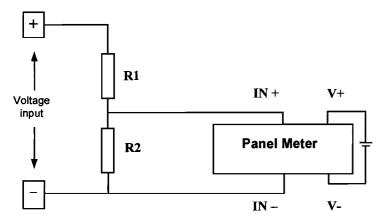

Reference Adjustment

The internal reference is factory-set to give the correct reading for a known voltage applied to the input terminals.

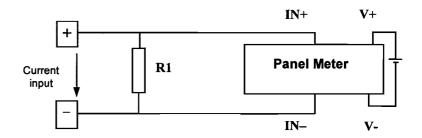

Decimal Point

The decimal point is set by jumpers P1, P2 and P3 (see "How to expand").

Multirange Voltmeter Expansion



Multirange Current Meter Expansion


How to Expand

To expand the range of voltage to be measured, remove RA ($10M\Omega$) and RB (s/c link) from meter PCB and connect external resistors as follows:

Range	R1 (Theoretical value)	R1 (Practical combination)	R2	Fit Jumper link
20V	9.9MΩ	7.5M Ω + series 2.4M Ω	100k Ω	P2
200V	9.99ΜΩ	10ΜΩ	10k Ω	Р3
2000V	9.999MΩ	10M Ω	1kΩ	no jumper

To expand the range of current to be measured, use the correct value of shunt resistor R1 as shown below:

Range	R1	
0.2mA	1kΩ	
2mA	100Ω	
20mA	10Ω	
200mA	1Ω	
2A	0.1Ω	